Endothelial Cells Control Pancreatic Cell Fate at Defined Stages through EGFL7 Signaling
نویسندگان
چکیده
Although endothelial cells have been shown to affect mouse pancreatic development, their precise function in human development remains unclear. Using a coculture system containing human embryonic stem cell (hESC)-derived progenitors and endothelial cells, we found that endothelial cells play a stage-dependent role in pancreatic development, in which they maintain pancreatic progenitor (PP) self-renewal and impair further differentiation into hormone-expressing cells. The mechanistic studies suggest that the endothelial cells act through the secretion of EGFL7. Consistently, endothelial overexpression of EGFL7 in vivo using a transgenic mouse model resulted in an increase of PP proliferation rate and a decrease of differentiation toward endocrine cells. These studies not only identified the role of EGFL7 as the molecular handle involved in the crosstalk between endothelium and pancreatic epithelium, but also provide a paradigm for using hESC stepwise differentiation to dissect the stage-dependent roles of signals controlling organogenesis.
منابع مشابه
EGFL7: a unique angiogenic signaling factor in vascular development and disease.
EGFL7 is a secreted angiogenic factor that is highly conserved in vertebrates. Most secreted angiogenic signaling molecules, including VEGF and fibroblast growth factor-2, are mainly expressed by non-endothelial cell types such as fibroblasts. In contrast, EGFL7 is unique because it is almost exclusively expressed by and acts on endothelial cells. Egfl7 expression is highest when the endotheliu...
متن کاملSuppression of the Epidermal Growth Factor-like Domain 7 and Inhibition of Migration and Epithelial-Mesenchymal Transition in Human Pancreatic Cancer PANC-1 Cells.
BACKGROUND Epidermal growth factor-like domain multiple 7 (EGFL7), a secreted protein specifically expressed by endothelial cells during embryogenesis, recently was identified as a critical gene in tumor metastasis. Epithelial-mesenchymal transition (EMT) was found to be closely related with tumor progression. Accordingly, it is important to investigate the migration and EMT change after knock-...
متن کاملEgfl7 promotes tumor escape from immunity by repressing endothelial cell activation.
Downregulating the leukocyte adhesion molecules expressed by endothelial cells that line tumor blood vessels can limit the entry of immune effector cells into the tumor mass, thereby contributing to tumoral immune escape. Egfl7 (also known as VE-statin) is a secreted protein specifically expressed by endothelial cells in normal tissues and by cancer cells in various human tumors. High levels of...
متن کاملEpidermal growth factor-like domain 7 suppresses intercellular adhesion molecule 1 expression in response to hypoxia/reoxygenation injury in human coronary artery endothelial cells.
BACKGROUND Epidermal growth factor-like domain 7 (Egfl7) is a chemoattractant for endothelial cells, and its expression is restricted to endothelial cells. Hypoxia/reoxygenation (H/R) induced endothelial injury that occurs during transplantation contributes to the subsequent development of allograft vasculopathy. We investigated the effect of Egfl7 on endothelial cell intercellular adhesion mol...
متن کاملHyperoxia and EGFL7: saving cells from too much of a good thing.
HIGH OXYGEN CONCENTRATIONS can damage cells. Whereas the detrimental effects of oxygen have been well-reported (1), respiratory diseases such as pneumonia and neonatal surfactant deficiency often cause hypoxemia and necessitate the use of supplemental oxygen as part of their management. Administering high oxygen concentrations for prolonged periods may contribute to adverse outcomes, including ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2015